Challenges in KNN Classification

نویسندگان

چکیده

The KNN algorithm is one of the most popular data mining algorithms. It has been widely and successfully applied to analysis applications across a variety research topics in computer science. This paper illustrates that, despite its success, there remain many challenges classification, including K computation, nearest neighbor selection, search classification rules. Having established these issues, recent approaches their resolution are examined more detail, thereby providing potential roadmap for ongoing KNN-related research, as well some new rules regarding how tackle issue training sample imbalance. To evaluate proposed approaches, experiments were conducted with 15 UCI benchmark datasets.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Associative Classification with Knn

Associative classification usually generates a large set of rules. Therefore, it is inevitable that an instance matches several rules which classes are conflicted. In this paper, a new framework called Associative Classification with KNN (AC-KNN) is proposed, which uses an improved KNN algorithm to address rule conflicts. Traditional K-Nearest Neighbor (KNN) is low efficient due to its calculat...

متن کامل

KNN-CF Approach: Incorporating Certainty Factor to kNN Classification

 Abstract—KNN classification finds k nearest neighbors of a query in training data and then predicts the class of the query as the most frequent one occurring in the neighbors. This is a typical method based on the majority rule. Although majority-rule based methods have widely and successfully been used in real applications, they can be unsuitable to the learning setting of skewed class distr...

متن کامل

KNN Model-Based Approach in Classification

The k-Nearest-Neighbours (kNN) is a simple but effective method for classification. The major drawbacks with respect to kNN are (1) its low efficiency being a lazy learning method prohibits it in many applications such as dynamic web mining for a large repository, and (2) its dependency on the selection of a “good value” for k. In this paper, we propose a novel kNN type method for classificatio...

متن کامل

KNN Classification and Regression using SAS

K-Nearest Neighbor (KNN) classification and regression are two widely used analytic methods in predictive modeling and data mining fields. They provide a way to model highly nonlinear decision boundaries, and to fulfill many other analytical tasks such as missing value imputation, local smoothing, etc. In this paper, we discuss ways in SAS R © to conduct KNN classification and KNN Regression. S...

متن کامل

Multi-label Classification: Inconsistency, Ambiguity and Class Balanced KNN Classification

Many existing researches employ one-vs-others approach to decompose a multi-label classification problem into a set of 2-class classification problems, one for each class. This approach is valid in traditional single-label classification. However, it incurs training inconsistency in multi-label classification, because a multi-label data point could belong to more than one class. In this work, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Knowledge and Data Engineering

سال: 2022

ISSN: ['1558-2191', '1041-4347', '2326-3865']

DOI: https://doi.org/10.1109/tkde.2021.3049250